Factoring bivariate sparse (lacunary) polynomials
نویسندگان
چکیده
We present a deterministic algorithm for computing all irreducible factors of degree ≤ d of a given bivariate polynomial f ∈ K[x, y] over an algebraic number field K and their multiplicities, whose running time is polynomial in the bit length of the sparse encoding of the input and in d . Moreover, we show that the factors over Q of degree ≤ d which are not binomials can also be computed in time polynomial in the sparse length of the input and in d .
منابع مشابه
Univariate Polynomial Factorization Over Finite Fields
This paper shows that a recently proposed approach of D. Q. Wan to bivariate factorization over finite fields, the univariate factoring algorithm of V. Shoup, and the new bound of this paper for the average number of irreducible divisors of polynomials of a given degree over a finite field can be used to design a bivariate factoring algorithm that is polynomial for "almost all" bivariate polyno...
متن کاملBivariate factorizations via Galois theory, with application to exceptional polynomials
We present a method for factoring polynomials of the shape f(X)− f(Y ), where f is a univariate polynomial over a field k. We then apply this method in the case when f is a member of the infinite family of exceptional polynomials we discovered jointly with H. Lenstra in 1995; factoring f(X)−f(Y ) in this case was posed as a problem by S. Cohen shortly after the discovery of these polynomials.
متن کاملDeterministically Factoring Sparse Polynomials into Multilinear Factors
We present the first efficient deterministic algorithm for factoring sparse polynomials that split into multilinear factors. Our result makes partial progress towards the resolution of the classical question posed by von zur Gathen and Kaltofen in [GK85] to devise an efficient deterministic algorithm for factoring (general) sparse polynomials. We achieve our goal by introducing essential factor...
متن کاملFactoring Polynomials over Global Fields
We prove polynomial time complexity for a now widely used factorization algorithm for polynomials over the rationals. Our approach also yields polynomial time complexity results for bivariate polynomials over a finite field.
متن کاملDeterministically Factoring Sparse Polynomials into Multilinear Factors and Sums of Univariate Polynomials
We present the first efficient deterministic algorithm for factoring sparse polynomials that split into multilinear factors and sums of univariate polynomials. Our result makes partial progress towards the resolution of the classical question posed by von zur Gathen and Kaltofen in [6] to devise an efficient deterministic algorithm for factoring (general) sparse polynomials. We achieve our goal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Complexity
دوره 23 شماره
صفحات -
تاریخ انتشار 2007